
PrivaScissors: Enhance the Privacy of Collaborative
Inference through the Lens of Mutual Information

Lin Duan∗, Jingwei Sun∗, Yiran Chen, Maria Gorlatova
Department of Electrical and Computer Engineering

Duke University
{lin.duan, jingwei.sun, yiran.chen, maria.gorlatova}@duke.edu

Abstract

Edge-cloud collaborative inference empowers resource-limited IoT devices to sup-
port deep learning applications without disclosing their raw data to the cloud server,
thus preserving privacy. Nevertheless, prior research has shown that collaborative
inference still results in the exposure of data and predictions from edge devices.
To enhance the privacy of collaborative inference, we introduce a defense strategy
called PrivaScissors, which is designed to reduce the mutual information between a
model’s intermediate outcomes and the device’s data and predictions. We evaluate
PrivaScissors’s performance on several datasets in the context of diverse attacks
and offer a theoretical robustness guarantee.

1 Introduction

Edge devices are rapidly evolving, becoming smarter and more versatile. These devices are expected
to perform a wide range of deep learning (DL) inference tasks with high efficiency and remarkable
performance. However, implementing DL inference applications on such edge devices can be quite
challenging due to the constraints imposed by the on-device resource availability. As we see the rise of
state-of-the-art DL models, such as Large Language Models, they are becoming increasingly complex,
housing a colossal number of parameters. This escalation in complexity and size makes it difficult to
store a DL model on an edge device, which typically has limited memory space. Furthermore, the
restricted computational resources could lead to unacceptably long latency during inference. One
potential solution to this predicament is to transmit the input data directly from the edge device
to a cloud server. The server, which houses the DL model, then conducts inference and sends the
prediction back to the device. However, this approach carries with it the risk of privacy breaches,
particularly if the input data are sensitive in nature - such as facial images. It’s also important to note
that the predictions can also contain confidential information, such as the patient’s diagnostic results.

Collaborative inference [1–3] has become a privacy-preserving approach to deploying DL inference
applications on commodity edge devices that have limited computing resources. Fig. 1 shows
a general collaborative inference system. Suppose an edge device and a cloud server conduct
collaborative inference. The deep learning model can be divided into three parts2. The first and last
few layers of the network are deployed on the edge device, while the remaining layers are offloaded
to a cloud server. This division allows most of the computational tasks to be handled by the server,
effectively mitigating the resource limitations on the device. The edge device and the cloud server
communicate only the intermediate outputs of the model, ensuring that the raw data and predictions
remain inaccessible to the server. However, recent works [4, 5] have revealed that sharing these

∗Both authors contributed equally to this research and are placed according to alphabetical order.
2It is notable that some applications might divide the model into two parts, and the edge devices might hold

the first or the last few layers, which have different privacy leakage problems. This paper considers the general
setting, which has privacy concerns in both settings.

Preprint. Under review.

𝑧𝑧

𝑦𝑦

𝜃𝜃𝑒𝑒

𝜃𝜃𝑐𝑐

𝑟𝑟

𝑥𝑥
𝜃𝜃ℎ

𝑥𝑥𝑥 𝑦𝑦
Cloud
Server

Edge
device

fox

fox

Figure 1: A general framework of collaborative inference. The malicious server can infer data and
predictions on the edge device. PrivaScissors defends against privacy leakage by reducing the mutual
information between the model’s intermediate outcomes and the edge device’s data and predictions.

intermediate outputs can still lead to data and prediction leakage. A malicious server can, for instance,
reconstruct input data from the representations (i.e., r in Fig. 1) uploaded by the device through
Model Inversion (MI) attacks [6, 7, 5]. Furthermore, the high-level features (i.e., z in Fig. 1) contain
rich information about the predictions, making it feasible for a malicious server to infer the device’s
predictions through these features [8–10]. While there have been considerable explorations into
privacy preservation in collaborative inference [4, 5, 11, 12], existing defenses tend to significantly
degrade model utility. This degradation is particularly evident in scenarios where attacks are relatively
strong. For example, when the head model on the device (i.e., θh in Fig. 1) is shallow, existing
defenses cannot guarantee the privacy of the input data without a significant drop in model accuracy.

We propose a defense method named PrivaScissors, designed from a mutual information perspective
to enhance the edge device’s privacy in collaborative inference. This approach works by protecting
both the device’s data and its predictions. To protect the device’s data, we regularize the head model
on the device to extract representations that hold less mutual information with the input. To protect
the prediction, we regularize the features extracted by the server’s encoder to minimize the mutual
information they contain with the label. We derive a variational mutual information upper-bound
and develop an adversarial training method to minimize this bound on the device side. Our defense’s
robustness is theoretically guaranteed. We evaluate PrivaScissors on CIFAR10 and CIFAR100 against
both black-box and white-box MI attacks. The results show that PrivaScissors can effectively defend
the attacks with less than a 3% drop in model accuracy even when the head model on the device has
only one convolutional layer, where the attacks are extremely strong. We also evaluate our defense
against prediction leakage using multiple model completion (MC) attacks [8, 9]. The results show
that our defense achieves the best trade-off between the model accuracy and defending effectiveness
compared with the baselines.

Our contributions are summarized as follows:

• To the best of our knowledge, this is the first paper to systematically address the privacy
leakage in collaborative inference, encompassing both data leakage and prediction leakage.

• We propose a defense method against data and prediction leakage in collaborative inference
from the mutual information perspective. We offer a theoretical robustness guarantee of our
defense against general privacy leakage from the intermediate outcomes of a model.

• We empirically evaluate our defense across multiple datasets and against multiple attacks.
The results show that our defense can defend MI attacks while preserving high accuracy,
even when the head model has only one convolutional layer. Our defense can also prevent
prediction leakage against MC attacks with nearly no model accuracy drop.

2 Related Work

2.1 Privacy Leakage in Collaborative Inference

Privacy leakage is drawing more and more attention as the rapid growth of commercial deployment
of deep learning, especially in collaborative learning scenarios, whose primary concern is privacy. In
collaborative inference, we categorize privacy leakage into two types, i.e., data leakage [13, 4, 14, 15]
and prediction leakage [8–10].

2

For data leakage, [13] proposes general attack methods for complex models, such as Neural Networks,
by matching the correlation between adversary features and target features, which can be seen as a
variant of model inversion [16, 17]. [4, 18, 15, 19, 20, 14] also propose variants of model inversion
attack. While all these attacks are in the inference phase, [15] proposes a variant of DLG [6] which
can perform attacks in the training phase. For prediction leakage, [9] proposes an attack and defense
method for two-party split learning on binary classification problems, a special collaborative inference
setting. Additionally, [8] proposes three different label inference attack methods considering different
settings in collaborative inference: direct label inference attack, passive label inference attack, and
active label inference attack.

2.2 Defense in Collaborative Inference

Defensive methods have also been proposed against privacy leakage in collaborative inference. To
defend against data leakage, some works apply differential privacy (DP) [4, 5] and compression [4, 5,
11] to the representations and models. These methods can sometimes defend against data leakage
from the representation, but they also cause substantial model performance degradation because they
destroy the knowledge/information in the representations. Two recent works also try to solve the
data leakage problem from the mutual information perspective [11, 12]. However, their methods
only achieve decent results when the head model on the edge device is deep, which is not practical
when the computation power is constrained on the edge device. To defend against prediction leakage,
[10] manipulates the labels following specific rules to defend the direct label inference attack, which
can be seen as a variant of label differential privacy (label DP) [21, 22] in collaborative inference.
Compression and quantization of the gradients [8, 12] are also applied to defend against prediction
leakage. However, similarly to the defense against data leakage, these defenses cause substantial
model performance degradation to achieve decent defending performance.

3 Preliminary

3.1 Collaborative Inference Setting

Suppose an edge device and a cloud server conduct collaborative inference. Following the setting in
Fig. 1, the deep learning model is divided into a head model fhθh , an encoder feθe and a classifier f cθc .
The head model and classifier are deployed on the edge device, and the encoder is on the cloud server.
Given an input xi, the edge device first calculates the representation ri = fhθh(xi) and sends ri to
the server. Then the server extracts the feature from the received representation zi = feθe(ri) and
sends the feature back to the edge device. After receiving the feature, the edge device calculates the
prediction ŷi = f cθc(zi). In this paper, the results of fhθh sent from the device to the server are referred
to as representations, and features refer to the results of feθe sent from the server to the device. The
overall inference procedure can be formulated as

ŷi = f cθc(f
e
θe(f

h
θh(xi))). (1)

In the real world, the raw data xi and prediction ŷi are important intelligent properties of the edge
device and may contain private information. In the inference procedure, the edge device does not
send raw data to the server, and the inference results are also inaccessible to the server.

3.2 Threat Model

We consider that the edge device possessing the head model and the classifier is trusted. The edge
device only uploads the representations to the server and never leaks raw data or predictions to
the server. However, the cloud server is untrusted, attempting to steal raw data and predictions.
We assume the untrusted server strictly follows the collaborative inference protocols, and it cannot
compromise the inference process conducted by the edge device. With the received representation ri,
the server can reconstruct the input data xi on the edge device by conducting model inversion (MI)
attacks [6, 7, 4]. Notably, the head model on the edge device is usually shallow due to the computation
resource limitation, which aggravates data leakage vulnerability from the representation [5]. The
encoder on the server extracts high-level features containing rich information about the prediction,
which enables the server to infer predictions of the device.

3

4 Method

4.1 Defense Formulation

To defend against privacy leakage, we propose a learning algorithm that regularizes the model during
the training phase. Following the setup of 3.1, suppose the edge device has sample pairs {(xi, yi)}Ni=1

drawn from a distribution p (x, y). The representation is calculated as r = fhθh(x) by the edge device,
and the cloud server computes features z = feθe(r). We apply x, y, r, z here to represent random
variables, while xi, yi, ri, zi are deterministic values. To preserve the privacy of the edge device’s
raw data and inference results, our learning algorithm is to achieve three goals:

• Goal 1: To preserve the performance of collaborative inference, the main objective loss
should be minimized.

• Goal 2: To reduce the data leakage from the representations, θh should not extract represen-
tations r containing much information about the raw data x.

• Goal 3: To reduce the leakage of the predictions on the edge device, θe on the cloud server
should not be able to extract features z containing much information about the true label y.

Formally, we have three training objectives:

Prediction: min
θh,θe,θc

L
(
f cθc

(
feθe

(
fhθh(x)

))
, y
)
,

Data protection:min
θh

I(r; x),

Prediction protection: min
θh,θe

I(z; y),

(2)

where I(r; x) is the mutual information between the representation and the data, which indicates how
much information r preserves for the data x. Similarly, I(z; y) is the mutual information between the
feature and the label. We minimize these mutual information terms to prevent the cloud server from
inferring the data x and label y from r and z, respectively.

The prediction objective is usually easy to optimize (e.g., cross-entropy loss for classification).
However, the mutual information terms are hard to calculate in practice for two reasons: 1. r and x
are high-dimensional, and it is extremely computationally heavy to compute their joint distribution;
2. Calculating the mutual information requires knowing the distributions p(x|r) and p(y|z), which
are both difficult to compute. To derive tractable estimations of the mutual information objectives,
we leverage CLUB[23] to formulate variational upper-bounds of mutual information terms. We first
formulate a variational upper-bound of I(r; x):

I (r; x)
≤ IvCLUB (r; x)
:= Ep(r,x) log qψ (x|r)− Ep(r)p(x) log qψ (x|r) ,

(3)

where qψ (x|r) is a variational distribution with parameters ψ to approximate p (x|r). To guarantee
the inequality of Eq. (3), qψ (x|r) should satisfy

KL (p (r, x) ||qψ (r, x)) ≤ KL (p (r) p (x) ||qψ (r, x)) , (4)

which can be achieved by minimizing KL (p (r, x) ||qψ (r, x)):
ψ = argmin

ψ
KL (p (r, x) ||qψ (r, x))

= argmin
ψ

Ep(r,x) [log (p (x|r) p (r))− log (qψ (x|r) p (r))]

= argmax
ψ

Ep(r,x) log (qψ (x|r)) .

(5)

With sample pairs {(xi, yi)}Ni=1, we can apply the sampled vCLUB (vCLUB-S) mutual information
estimator in [23] to reduce the computational overhead, which is an unbiased estimator of IvCLUB and
is formulated as

ÎvCLUB-S(r; x) =
1

N

N∑
i=1

[
log qψ (xi|ri)− log qψ

(
xk′i |ri

)]
, (6)

4

where k′i is uniformly sampled from indices {1, ..., N}. With Eq. (3), Eq. (5) and Eq. (6), the objective
of data protection is formulated as:

min
θh

I(r; x)⇔ min
θh

ÎvCLUB-S(r; x)

= min
θh

1

N

N∑
i=1

[
max
ψ

log qψ (xi|ri)− log qψ
(
xk′i |ri

)]
.

(7)

Similarly, we can use a variational distribution qϕ(y|z) with parameter ϕ to approximate p(y|z), and
formulate the objective of label protection as:

min
θh,θe

I(z; y)⇔ min
θh,θe

ÎvCLUB-S(z; y)

= min
θh,θe

1

N

N∑
i=1

[
max
ϕ

log qϕ (yi|zi)− log qϕ
(
yn′
i
|zi

)]
.

(8)

Suppose we use gψ, hϕ to parameterize qψ and qϕ, respectively. By combining Eq. (7), Eq. (8) and
the prediction objective with weight hyper-parameters λd and λl, we formulate the overall optimizing
objective as

min
θh,θe,θc

(1− λd − λl)
1

N

N∑
i=1

L
(
fcθc

(
feθe

(
fhθh(xi)

))
, yi

)
︸ ︷︷ ︸

Lc

+min
θh

max
ψ

λd
1

N

N∑
i=1

log gψ
(
xi|fhθh(xi)

)
︸ ︷︷ ︸

Ld_a

+min
θh

λd
1

N

N∑
i=1

− log gψ
(
xk′i |f

h
θh(xi)

)
︸ ︷︷ ︸

Ld_r

+ min
θh,θe

max
ϕ

λl
1

N

N∑
i=1

log hϕ
(
yi|feθe

(
fhθh(xi)

))
︸ ︷︷ ︸

Ll_a

+ min
θh,θe

λl
1

N

N∑
i=1

− log hϕ
(
yn′
i
|feθe

(
fhθh(xi)

))
︸ ︷︷ ︸

Ll_r

.

(9)

hϕ can be easily constructed to estimate p (y|z) given the task of inference (e.g., classifier for
classification task). To estimate p (x|r), we assume that x follows the Gaussian distribution of which
the mean vector is determined by r and the variance is 1. Under this assumption, we apply a generator
gψ to estimate the mean vector of x given r.

𝑧𝑧
𝜃𝜃𝑒𝑒

𝜃𝜃𝑐𝑐

𝑟𝑟

𝑥𝑥
𝜃𝜃ℎ

Cloud Server

Edge device

𝜓𝜓

𝜙𝜙

Goal 2: Data protection
ℒ𝑑𝑑_𝑎𝑎 = log𝑔𝑔𝜓𝜓 𝑥𝑥 𝑟𝑟
ℒ𝑑𝑑_𝑟𝑟 = − log𝑔𝑔𝜓𝜓 𝑥𝑥𝑘𝑘′ 𝑟𝑟

Goal 3: Prediction
protection
ℒ𝑙𝑙_𝑎𝑎 = logℎ𝜙𝜙 𝑦𝑦 𝑧𝑧
ℒ𝑙𝑙_𝑟𝑟 = −logℎ𝜙𝜙 𝑦𝑦𝑛𝑛′ 𝑧𝑧

Goal 1: Prediction
ℒ𝑐𝑐 = ℒ(𝑓𝑓𝜃𝜃𝑐𝑐

𝑐𝑐 (𝑧𝑧),𝑦𝑦)

Figure 2: An overview of PrivaScissors. Training step 1: Optimize the classifiers θc and ϕ by
minimizing Lc and maximizing Ll_a, respectively. Step 2: Optimize the generator ψ by maximizing
Ld_a. Step 3: Optimize θh and θe by minimizing (1−λd−λl)Lc+λlLl_a+λlLl_r+λdLd_a+λdLd_r.

4.2 Learning Algorithm

The overall objective has five terms. For simplicity, we denote these five objective terms as Lc, Ld_a,
Ld_r, Ll_a and Ll_r, respectively, as shown in Eq. (9). Lc is the prediction objective. Ld_a and Ld_r

5

comprise the data protection objective. Ld_a is an adversarial training objective where an auxiliary
generator gψ is trained to capture data information while the head layers fhθh are trained to extract
as little data information as possible. Ld_r regularizes fhθh to extract representations that can be
used to generate randomly picked samples. Ll_a and Ll_r have similar effect with Ld_a and Ld_r,
respectively. We can reorganize the overall training objective as

θh, θe, θc, ψ, ϕ = arg min
θh,θe

[
(1− λd − λl)min

θc
Lc + λlmax

ϕ
Ll_a + λlLl_r + λdmax

ψ
Ld_a + λdLd_r

]
.

(10)

Based on Eq. (10), we develop a collaborative learning algorithm. For each batch of data, the device
first optimizes the classifiers θc and ϕ by minimizing Lc and maximizing Ll_a, respectively. Then,
the device optimizes the generator ψ by maximizing Ld_a. Finally, θh and θe are optimized by
minimizing (1− λd − λl)Lc + λlLl_a + λlLl_r + λdLd_a + λdLd_r. The detailed algorithm can be
found in Appendix A. Note that θh, θc, ψ and ϕ are deployed on devices, and their training does not
need additional information from the cloud server compared with training without our defense. The
training procedure of θe does not change, which makes our defense concealed from the cloud server.

4.3 Robustness Guarantee

We derive certified robustness guarantees for our defenses against prediction and data leakage.
Following the notations in Sec. 4.1, we have the following theorem of robustness guarantee for
prediction leakage after applying PrivaScissors. All the proofs can be found in Appendix B.

Theorem 1 Let hϕ parameterize qϕ in Eq. (8). Suppose the malicious server optimizes an auxiliary
model hm(y|z) to estimate p(y|z). For any hm(y|z), we always have:

1

N

N∑
i=1

log hm(yi|zi) <
1

N

N∑
i=1

log p(yi) + ϵ, (11)

where

ϵ = IvCLUBhϕ
(z; y) + KL(p(y|z)||hϕ(y|z)). (12)

Specifically, if the task of collaborative inference is classification, we have the following corollary:

Corollary 1 Suppose the task of collaborative inference is classification. Following the notations in
Theorem 1 and let epsilon be defined therein, we have:

1

N

N∑
i=1

CE [hm(zi), yi] > CErandom − ϵ, (13)

where CE denotes the cross-entropy loss, and CErandom is the cross-entropy loss of random guessing.

For data leakage, we have the following theorem of robustness.

Theorem 2 Let the assumption of p(x|r) in Sec. 4.1 hold and gψ parameterize the mean of qψ in
Eq. (7). Q denotes the dimension of x. Suppose the malicious server optimizes an auxiliary model
gm(x|r) to estimate the mean of p(x|r). For any gm(x|r), we always have:

1

N

N∑
i=1

MSE [gm(ri), xi] >
2(κ− ϵ)

Q
, (14)

where MSE denotes the mean square error, and

κ = − 1

N

N∑
i=1

log

√
2π

p(xi)
,

ϵ = IvCLUBgψ
(r; x) + KL(p(x|r)||gψ(x|r)).

(15)

6

5 Experiments

We first evaluate PrivaScissors against data leakage and prediction leakage separately. Then we
evaluate the integration of defenses against data and prediction leakages.

5.1 Experimental Setup

Attack methods For data leakage, we evaluate PrivaScissors against two model inversion (MI)
attacks: (1) Knowledge Alignment (KA) [11] is a black-box MI attack, in which the malicious server
trains an inversion model that swaps the input and output of the target model using an auxiliary dataset.
The inversion model is then used to reconstruct the input given any representation. (2) Regularized
Maximum Likelihood Estimation (rMLE) [5] is a white-box MI attack that the malicious server has
access to the device’s extractor model θh. The server trains input to minimize the distance between
the fake representations and the received ground-truth representations. It is an unrealistic assumption
that the server can access the model on the device, and we apply this white-box attack to evaluate our
defense against extremely strong attacks. For prediction leakage, we evaluate our defense against
two attacks: (1) Passive Model Completion (PMC) [8] attack assumes that the malicious server has
access to an auxiliary labeled dataset and utilizes this auxiliary dataset to fine-tune a classifier that
can be applied to its encoder. (2) Active Model Completion (AMC) [8] attack is conducted by the
server to trick the collaborative model into relying more on its feature encoder.

Baselines We compare PrivaScissors with four existing defense baselines: (1) Adding Noise
(AN) [24] is proven effective against privacy leakage in collaborative learning by adding Laplacian
noise to the representations and gradients. (2) Data Compression (DC) [24] prunes representations
and gradients that are below a threshold magnitude, such that only a part of the representations
and gradients are sent to the server. (3) Privacy-preserving Deep Learning (PPDL) [25] is a
comprehensive privacy-enhancing method including three defense strategies: differential privacy, data
compression, and random selection. (4) Mutual Information Regularization Defense (MID) [12]
is the SOTA defense against privacy leakage in split learning and collaborative inference. MID is also
based on mutual information regularization by applying Variational Information Bottleneck (VIB).

Dataset & Hyperparameter configurations We evaluate on CIFAR10 and CIFAR100. For both
datasets, we apply ResNet18 as the backbone model. The first convolutional layer and the last basic
block are deployed on the device as the representation extractor and the classifier, respectively. We
set batch size B as 32 for both datasets. We apply SGD as the optimizer with the learning rate η set
to be 0.01. The server has 40 and 400 labeled samples to conduct KA and MC attacks for CIFAR10
and CIFAR100, respectively. For PrivaScissors, we apply a 1-layer decoder and a 3-layer MLP
to parameterize ψ and ϕ. For AN defense, we apply Laplacian noise with mean of zero and scale
between 0.0001-0.01. For DC baseline, we set the compression rate from 90% to 100%. For PPDL,
we set the Laplacian noise with scale of 0.0001-0.01, τ = 0.001 and θ between 0 and 0.01. For MID
baseline, we set the weight of mutual information regularization between 0-0.1.

Evaluation metrics (1) Utility metric (Model accuracy): We use the test data accuracy of the
classifier on the device to measure the performance of the collaborative model. (2) Robustness
metric (SSIM): We use SSIM (structural similarity) between the reconstructed images and the raw
images to evaluate the effectiveness of defense against data leakage. The lower the SSIM, the better
the defense performance. (3) Robustness metric (Attack accuracy): We use the test accuracy of
the server’s classifier after conducting MC attacks to evaluate the defense against prediction leakage.
The lower the attack accuracy, the higher the robustness against prediction leakage.

5.2 Results of Data Protection

We conduct experiments on CIFAR10 and CIFAR100 to evaluate our defense against the KA attack
and the rMLE attack. We set different defense levels for our methods (i.e., different λd values in
Eq. (9)) and baselines to conduct multiple experiments to show the trade-off between the model
accuracy and SSIM of reconstruction. The results are shown in Fig. 3.

For defense against KA attacks, our PrivaScissors can reduce the SSIM of reconstruction to lower than
0.2 with a model accuracy drop of less than 2% for CIFAR10. In contrast, the other baselines drop
model accuracy by more than 10% and cannot achieve the same defense effect even with an accuracy
drop of more than 10%. Notably, the malicious server has more auxiliary data on CIFAR100 than

7

6 0 6 4 6 8 7 2 7 6 8 0
0 . 2

0 . 4

0 . 6

0 . 8

6 6 6 8 7 0 7 2 7 4 7 6 7 8 8 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 80 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

(d) r M L E a t t a c k o n C I F A R 1 0 0(c) K A a t t a c k o n C I F A R 1 0 0(b) r M L E a t t a c k o n C I F A R 1 0

SS
IM

A c c u r a c y (%)
(a) K A a t t a c k o n C I F A R 1 0

SS
IM

A c c u r a c y (%)

 A D D C M I D P r i v a S c i s s o r s

SS
IM

A c c u r a c y (%)

SS
IM

A c c u r a c y (%)

Figure 3: Results of model accuracy v.s. SSIM of reconstruction on CIFAR10 and CIFAR100 against
rMLE and KA attack.

CIFAR10, making the attack harder to defend on CIFAR100 to the baselines. However, PrivaScissors
can still achieve an SSIM of lower than 0.2 with a model accuracy drop of less than 2%. We also
evaluate our defense against the KA attack with a larger auxiliary dataset on the malicious server, and
the results show that our defense can effectively defend against the KA attack when the server has
more auxiliary samples. For defense against rMLE attacks, PrivaScissors achieves similar results of
reducing the SSIM to lower than 0.2 with a model accuracy drop of less than 2% for CIFAR10 and
1% for CIFAR100, respectively, which outperforms the other baselines significantly.

AD DC MID PrivaScissors

Acc(%) 76.68 76.69 75.95 76.56

SSIM 0.3181 0.7479 0.7373 0.159

Acc(%) 73.26 73.38 72.17 75.62

SSIM 0.2535 0.5244 0.4576 0.145

Acc(%) 67.56 69.55 61.3 75.56

SSIM 0.2082 0.4074 0.3713 0.1425

Figure 4: Images reconstructed by the KA attack on CIFAR10 under different defenses.

To perceptually demonstrate the effectiveness of our defense, we show the reconstructed images by
the KA attack on CIFAR10 after applying baseline defenses and our defense in Fig. 4. It is shown that
by applying the baseline defenses, the reconstructed images still contain enough information to be
recognizable with the model accuracy of lower than 70%. For our method, the reconstructed images
do not contain much information about the raw images, with the model accuracy higher than 76%.

5.3 Results of Prediction Protection

We evaluate PrivaScissors on two datasets against two attack methods. We set different defense levels
for our methods (i.e., different λl values in Eq. (9)) and baselines to conduct multiple experiments to
show the trade-off between the model accuracy and attack accuracy. The defense results against PMC
and AMC attacks are shown in Fig. 5 and Fig. 6, respectively. To simulate the realistic settings in that
the malicious server uses different model architectures to conduct MC attacks, we apply different
model architectures (MLP & MLP_sim) for MC attacks.

For defense against PMC on CIFAR10, PrivaScissors achieves 10% attack accuracy (equal to random
guess) by sacrificing less than 0.5% model accuracy, while the other baselines suffer a model accuracy
drop by more than 4% to achieve the same defense effect. Similarly, PrivaScissors achieves 1% attack
accuracy on CIFAR100 by sacrificing less than 1% model accuracy, while the other baselines achieve
the same defense effect by sacrificing more than 6% model accuracy.

PrivaScissors also shows robustness against AMC. PrivaScissors achieves attack accuracy of the rate
of random guess by sacrificing less than 1% and 0.5% model accuracy on CIFAR10 and CIFAR100,
respectively. The other baselines achieve the same defense performance by sacrificing more than 5%
and 4% model accuracy, respectively.

8

6 4 6 8 7 2 7 6 8 00
1 0
2 0
3 0
4 0
5 0
6 0

6 8 7 0 7 2 7 4 7 6 7 8 8 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

3 8 4 0 4 2 4 4 4 6 4 80

5

1 0

1 5

3 8 4 0 4 2 4 4 4 6 4 80
5

1 0
1 5
2 0
2 5

(d) P M C - C I F A R 1 0 0 - M L P _ s i m(b) P M C - C I F A R 1 0 - M L P _ s i m (c) P M C - C I F A R 1 0 0 - M L P

Att
ack

 ac
cur

acy
 (%

) ↓

A c c u r a c y (%) ↑

 A D P P D L M I D D C P r i v a S c i s s o r s

(a) P M C - C I F A R 1 0 - M L P

Att
ack

 ac
cur

acy
 (%

) ↓

A c c u r a c y (%) ↑

Att
ack

 ac
cur

acy
 (%

) ↓

A c c u r a c y (%) ↑

Att
ack

 ac
cur

acy
 (%

) ↓

A c c u r a c y (%) ↑

Figure 5: Results of model accuracy v.s. attack accuracy on CIFAR10 and CIFAR100 against PMC
attack.

6 8 7 0 7 2 7 4 7 6 7 8 8 00
1 0
2 0
3 0
4 0
5 0
6 0

7 2 7 3 7 4 7 5 7 6 7 7 7 8
1 0
2 0
3 0
4 0
5 0
6 0
7 0

3 8 4 0 4 2 4 4 4 6 4 80

5

1 0

1 5

3 8 4 0 4 2 4 4 4 6 4 80
5

1 0
1 5
2 0
2 5

Att
ack

 ac
cur

acy
 (%

) ↓

A c c u r a c y (%) ↑

 A D P P D L M I D D C P r i v a S c i s s o r s

(d) A M C - C I F A R 1 0 0 - M L P _ s i m(c) A M C - C I F A R 1 0 0 - M L P(b) A M C - C I F A R 1 0 - M L P _ s i m(a) A M C - C I F A R 1 0 - M L P

Att
ack

 ac
cur

acy
 (%

) ↓

A c c u r a c y (%) ↑
Att

ack
 ac

cur
acy

 (%
) ↓

A c c u r a c y (%) ↑

Att
ack

 ac
cur

acy
 (%

) ↓

A c c u r a c y (%) ↑

Figure 6: Results of model accuracy v.s. attack accuracy on CIFAR10 and CIFAR100 against AMC
attack.

5.4 Integration of Data and Prediction protection

We have shown the compared results of data and prediction protection between PrivaScissors and the
baselines in Sec. 5.2 and Sec. 5.3. In this section, we evaluate the integration of data and prediction
protection of PrivaScissors. We set λd and λl between 0.05-0.4 and evaluate the defenses. The results
of defense against the KA and PMC attacks on CIFAR10 and CIFAR100 are shown in Fig. 7. It is
shown that PrivaScissors can effectively protect data and prediction simultaneously with less than a
2% accuracy drop for both datasets.

7 5 7 6 7 7 7 80 . 0

0 . 2

0 . 4

0 . 6

0 . 8
 S S I M
 T e s t a c c S S I M

 T e s t a c c

A c c u r a c y (%) ↑

SS
IM

 ↓

0

2 0

4 0

6 0

 Te
st a

ccu
rac

y (
%)

 ↓

4 5 4 6 4 70 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

A c c u r a c y (%) ↑

SS
IM

 ↓

0

5

1 0

1 5

(b) C I F A R 1 0 0

 Te
st a

ccu
rac

y (
%)

 ↓

(a) C I F A R 1 0

Figure 7: PrivaScissors against KA and PMC on CIFAR10 and CIFAR100.

6 Conclusion

We propose a defense method PrivaScissors, against privacy leakage in collaborative inference by
reducing the mutual information between the model’s intermediate outcomes and the device’s data
and predictions. The experimental results show that PrivaScissors can defend against data leakage
and prediction leakage effectively. We also provide a theoretically certified robustness guarantee
for PrivaScissors. In this paper, we focus on the scenario where there is only one edge device. Our
defense can be easily applied to the collaborative inference scenario with multiple edge devices.

9

References
[1] G. Li, L. Liu, X. Wang, X. Dong, P. Zhao, and X. Feng, “Auto-tuning neural network quantiza-

tion framework for collaborative inference between the cloud and edge,” in Artificial Neural
Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, pp. 402–411,
Springer, 2018.

[2] N. Shlezinger, E. Farhan, H. Morgenstern, and Y. C. Eldar, “Collaborative inference via
ensembles on the edge,” in ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8478–8482, IEEE, 2021.

[3] H. Zhou, W. Zhang, C. Wang, X. Ma, and H. Yu, “Bbnet: a novel convolutional neural network
structure in edge-cloud collaborative inference,” Sensors, vol. 21, no. 13, p. 4494, 2021.

[4] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against collaborative inference,” in
Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162,
2019.

[5] Z. He, T. Zhang, and R. B. Lee, “Attacking and protecting data privacy in edge–cloud collab-
orative inference systems,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9706–9716,
2020.

[6] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in neural information
processing systems, vol. 32, 2019.

[7] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage from gradients,” arXiv
preprint arXiv:2001.02610, 2020.

[8] C. Fu, X. Zhang, S. Ji, J. Chen, J. Wu, S. Guo, J. Zhou, A. X. Liu, and T. Wang, “Label inference
attacks against vertical federated learning,” in 31st USENIX Security Symposium (USENIX
Security 22), pp. 1397–1414, 2022.

[9] O. Li, J. Sun, X. Yang, W. Gao, H. Zhang, J. Xie, V. Smith, and C. Wang, “Label leakage and
protection in two-party split learning,” arXiv preprint arXiv:2102.08504, 2021.

[10] Y. Liu, Z. Yi, Y. Kang, Y. He, W. Liu, T. Zou, and Q. Yang, “Defending label inference and
backdoor attacks in vertical federated learning,” arXiv preprint arXiv:2112.05409, 2021.

[11] T. Wang, Y. Zhang, and R. Jia, “Improving robustness to model inversion attacks via mutual
information regularization,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, pp. 11666–11673, 2021.

[12] T. Zou, Y. Liu, and Y.-Q. Zhang, “Mutual information regularization for vertical federated
learning,” arXiv preprint arXiv:2301.01142, 2023.

[13] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on model predictions in
vertical federated learning,” in 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pp. 181–192, IEEE, 2021.

[14] X. Jiang, X. Zhou, and J. Grossklags, “Comprehensive analysis of privacy leakage in verti-
cal federated learning during prediction,” Proceedings on Privacy Enhancing Technologies,
vol. 2022, no. 2, pp. 263–281, 2022.

[15] X. Jin, P.-Y. Chen, C.-Y. Hsu, C.-M. Yu, and T. Chen, “Cafe: Catastrophic data leakage in
vertical federated learning,” Advances in Neural Information Processing Systems, vol. 34,
pp. 994–1006, 2021.

[16] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence
information and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, pp. 1322–1333, 2015.

[17] J. Sun, A. Li, B. Wang, H. Yang, H. Li, and Y. Chen, “Soteria: Provable defense against privacy
leakage in federated learning from representation perspective,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9311–9319, 2021.

10

[18] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-how easy is it
to break privacy in federated learning?,” Advances in Neural Information Processing Systems,
vol. 33, pp. 16937–16947, 2020.

[19] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov, “See through gradients:
Image batch recovery via gradinversion,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16337–16346, 2021.

[20] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended feature leakage
in collaborative learning,” in 2019 IEEE symposium on security and privacy (SP), pp. 691–706,
IEEE, 2019.

[21] K. Chaudhuri and D. Hsu, “Sample complexity bounds for differentially private learning,” in
Proceedings of the 24th Annual Conference on Learning Theory, pp. 155–186, JMLR Workshop
and Conference Proceedings, 2011.

[22] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, and C. Zhang, “Deep learning with label
differential privacy,” Advances in neural information processing systems, vol. 34, pp. 27131–
27145, 2021.

[23] P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin, “Club: A contrastive log-ratio upper
bound of mutual information,” in International conference on machine learning, pp. 1779–1788,
PMLR, 2020.

[24] C. Fu, X. Zhang, S. Ji, J. Chen, J. Wu, S. Guo, J. Zhou, A. X. Liu, and T. Wang, “Label inference
attacks against vertical federated learning,” in 31st USENIX Security Symposium (USENIX
Security 22), (Boston, MA), pp. 1397–1414, USENIX Association, Aug. 2022.

[25] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, (New York,
NY, USA), p. 1310–1321, Association for Computing Machinery, 2015.

11

A Algorithm

Algorithm 1 Training algorithm of PrivaScissors. ← means information is sent to the server;←
means information is sent to the device; red steps are conducted on the cloud server.
Input: Dataset {(xi, yi)}Ni=1; Learning rate η.
Output: θh; θe; θc;ψ;ϕ.
1: Initialize θh, θe, θc, ψ, ϕ;
2: for a batch of data {(xi, yi)}i∈B do
3: {ri}i∈B←{fhθh (xi)}i∈B;
4: Ld_a ← 1

|B|
∑
i∈B

log gψ (xi|ri);

5: ψ ← ψ + η∇ψLd_a;
6: {zi}i∈B←{feθe (ri)}i∈B;
7: Lc ← 1

|B|
∑
i∈B
L (fcθc (zi) , yi);

8: Ll_a ← 1
|B|

∑
i∈B

log hϕ (yi|zi);

9: θc ← θc − η∇θcLc;
10: ϕ← ϕ+ η∇ϕLl_a;
11: {yn′

i
}i∈B ← randomly sample {yn′

i
}i∈B from {yi}i∈[N];

12: {xk′i}i∈B ← randomly sample {xk′i}i∈B from {xi}i∈[N];

13: Ld_r ← 1
|B|

∑
i∈B
− log gψ

(
xk′i |r

2
i

)
;

14: Ll_r ← 1
|B|

∑
i∈B
− log hϕ

(
yn′
i
|z2i

)
;

15: {∇ziL}i∈B←{∇zi [(1− λd − λl)Lc + λlLl_a + λlLl_r + λdLd_a + λdLd_r]}i∈B;
16: ∇θeL ← 1

|B|
∑
i∈B
∇ziL∇θezi

17: θe ← θe − η∇θeL;
18: {∇riL}i∈B←{∇ziL∇rizi}i∈B;
19: ∇θhL ← 1

|B|
∑
i∈B
∇riL∇θhri;

20: θh ← θh − η∇θhL;
21: end for

B Proofs of theorems

Proof 1 According to Corollary 3.3 in [23], we have:

I(z; y) < IvCLUB(z; y) + KL(p(y|z)||hϕ(y|z)). (16)

Then we have
I(z; y) = Ep(z,y) log p (y|z)− Ep(y) log p (y) < ϵ, (17)

where ϵ = IvCLUB(z; y) + KL(p(y|z)||hϕ(y|z)). With the samples {xi, yi}, I(z; y) has an unbiased
estimation as:

1

N

N∑
i=1

log p(yi|zi)−
1

N

N∑
i=1

log p(yi) < ϵ. (18)

Suppose the adversary has an optimal model hm to estimate p(yi|zi) such that hm(yi|zi) = p(yi|zi)
for any i, then

1

N

N∑
i=1

log hm(yi|zi)−
1

N

N∑
i=1

log p(yi) < ϵ. (19)

For classification tasks, we have

1

N

N∑
i=1

CE [hm(zi), yi] > CErandom − ϵ. (20)

12

Proof 2 Similar with Eq. (18), we derive the following for data protection:

1

N

N∑
i=1

log p(xi|ri)−
1

N

N∑
i=1

log p(xi) < ϵ, (21)

where ϵ = IvCLUB(r; x) + KL(p(x|r)||gψ(x|r)). Following the assumption that p(x|r) follows a
Gaussian distribution of variance 1, suppose the adversary obtains an optimal estimator gm of the
mean of p(x|r) such that gm(xi|ri) = p(xi|ri) for any i. Then we have

1

N

N∑
i=1

log gm(xi|ri) <
1

N

N∑
i=1

log p(xi) + ϵ

1

N

N∑
i=1

log
1√
2π
e−

1
2 [xi−g

m(ri)]
T [xi−gm(ri)] <

1

N

N∑
i=1

log p(xi) + ϵ

− 1

N

N∑
i=1

log
√
2π − 1

2N

N∑
i=1

[xi − gm(ri)]
T
[xi − gm(ri)] <

1

N

N∑
i=1

log p(xi) + ϵ

1

2N

N∑
i=1

[xi − gm(ri)]
T
[xi − gm(ri)] >

1

N

N∑
i=1

log

√
2π

p(xi)
− ϵ.

(22)

We denote the dimension of x as Q and 1
N

N∑
i=1

log
√
2π

p(xi)
as κ. Then we have

1

N

N∑
i=1

MSE [gm(ri), xi] >
2(κ− ϵ)

Q
. (23)

13

	Introduction
	Related Work
	Privacy Leakage in Collaborative Inference
	Defense in Collaborative Inference

	Preliminary
	Collaborative Inference Setting
	Threat Model

	Method
	Defense Formulation
	Learning Algorithm
	Robustness Guarantee

	Experiments
	Experimental Setup
	Results of Data Protection
	Results of Prediction Protection
	Integration of Data and Prediction protection

	Conclusion
	Algorithm
	Proofs of theorems

